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Abstract

-We investigateg the Problem 04 selecting the *best' one of k arbitrary

systems or alternatives. Consider one observation from each of the k

systems. By 'best,' we mean that system which has the highest

probability of yielding the 'most desirable' of the k observations.

The term *most desirable' is defined according to some criterion of

goodness determined by the experimenter. We show that this problem

can be formulated as a multinomial selection problem. Hence,

multinomial selection procedures are, in a sense, nonparameltric

procedures. An up-to-date survey of such multinomial procedures is

given. Further, we describe how some of these procedures can be

adapted for use in the simulation environment.
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1. Introduction

Consider k different competing populations (or systems or

alternatives, etc). A natural question to ask ls Which of these k

systems is 'best?* By 'best' system, we could informally mean, e.g.

-that one of k inventory policies which maximizes profit,

-that one of k scales which is the most precise, or

-that one of k computer systems which has the greatest availability.

Thus, 'best' can take on a variety of meanings depending on the

practical problem at hand.

Denote the k populations (sources of observations) as

'1"21...,1k, respectively. Suppose we take independent vector-

observations (Xl9X2,%..9Xk)9 where X is from T.9 i-l... k. Further,

for i-1,...,k, denote

pi - PCXI is the 'most desirable' of XlX 2 ,...,Xk).

The term 'most desirable' must be defined according to some criterion

of goodness determined by the experimenter. Assume that nothing is

known beforehand concerning the values of the p. 's. Obviouslys that I

associated with the largest of the p, 's is the population which has

the highest probability of yielding the 'most desirable' observation

(of those observations from the k-vector). In this paper, our goal

will be to find that associated with the largest of the pi s. We

refer to that I i as the 'best' population.

In order to motivate this definition, consider a simple example.

Let A and 9 be two (s,S) inventory policies. Profit is taken to be

the criterion of desirability. Suppose that

Profit from A - 1000 with probability 0.001

M 0 0.999

and

....................................
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Profit from B m 0.999 with probability 1.

Clearly, E(Profit from A) v I > 0.999 * E(Profit from B); i.e., A

gives the higher average profit. However, P(Profit from B ) Profit

4rom A) a 0.9991 therefore, B gives the higher profit almost all of

the time. For this reason, the experimenter might Justifiably

consider policy B to be better than policy A.

Hence, it is meaningful to consider as *best' the policy which

will most likely produce the 'most desirable' observation.

This goal of finding the 'best' population can be viewed as that

of finding that cell of a k-nomial distribution with the largest

underlying probability. Suppose that we take one observation from

each of the k populations. Award a one (a *success') to the I

corresponding to the 'most desirable* of these k observations (use

randomization if necessary.) Award a zero to the remaining k-I ..

Clearly, this is the same as taking an observation from a multinomial

distribution with cell probabilities p 1'*...k.

Thus, the problem of finding the 'best' one of k arbitrary

populations can be formulated as a problem of finding that one

category of a k-nomial distribution with the highest underlying

' success' probability. This implies that any procedure which finds

the multinomial cell associated with the largest probability is a

*~ iobparaeetric procedure. Since most real-life systems do not follow

one of the 'usual' probability distributions, such nonparametric

procedures are seen to be very useful. We group these nonparametric

procedures under the heading of multi1omial selection procedures.

Additional motivation for the above arguments can be found in

%D echhofer and Sobel (1958).

In Section 2 of this paper, we give a brief summary of the



pertinent notation and terminology. In Section 3. some of the

existing selection procedures are presented. Section 4 is concerned

with applications to simulation.
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2. background

We now introduce notation and terminology which will be useful

for investigating the problem of finding the multinomial cell which

has the largest cell probability. Suppose that we take independent

observations sequentially from a k-nomial distribution with cell

probabilities p1oP29... Opk Pi > 0, Ep, - 1, until some stopping

criterion (several of which will be given in the sequel) is met. Most

of the procedures which we will study take observations (up to a

limit, perhaps) until one cell has 'significantly more' successes than

the other cells. In this case, the stopping criteria call for the

termination of the procedures.

Denote x I as the number of observations from cell I after t

multinomial observations (or 'stages*) have been taken, i-l,...,k;

t-1.2,... Further, denote p M i P -"23 " - PCk as the ordered

p .% and x Ell t  s S.. x Ek,, t as the ordered x it s. Assuma that we

have no a priori knowledge as to how the p i]'s are paired with the

multinomial cells.

Our goal is to select as best that cell which is associated with

PEW]' the largest probability. If the cell corresponding to PCk3 is

actually chosen, we say that a correct selection (CS) has been made.

Also, it is desired that the probability of correct selection (P(CS))

be at least P whenever e*P(k1] < PEW where CP * go is pre-

specified by the user (with 1 < G* < a and Il/k < P < 1). Define

Be - Wpie PCk- ] - PCk9 * We call B2e* the preference zone and L;*

the indifference-zone. [hultinomial procedures such as those to be

Vconsidered below fall under the classification of so-called

Indifference-zone selection procedures. Another rich family of

selection procedures employs the so-called subset approach; this



approach will not be emphasized here. The reader should refer to

Gupta and Panchapakesan (1979) for material concerning the

indifference-zone and subset methodologies.)

We will consider the following configuration of pEt3's as a

benchmark for comparison among procedures:

PCk) a goPEW t'29...,k-m (SC)

*e0 Pit (k-1+,)-l 9-,...,k-1; P(k3 - o k-1e 1 . SC stands

for slippage configuration (with slippage factor 0). For some

sampling procedures (cf: Bechhofer, Elmaghraby, and Morse (1959)),

this configuration of p E1's minimizes the P(CS) over p'fl e. In this

case, the SC is called the Jeast-favorable configuration (LFC).

Informally, the LFC can be viewed as a 'worst case' configuration

(given that pe 0 ). It is not known whether the SC is the LFC for all

of the multinomial procedures to be presented in the sequel. However,

this is a reasonable conjecture; we shall treat the SC as If it is

4p the LFC. Since we desire P(CS) > P* for all configurations pe 1%e*

then (assuming the conjecture to be true) we can equivalently require

that PCCSIVSCI>P . Hence, it is meaningful to investigate the SC.

Another interesting configuration is the equal probability

configuration (EPC), where p, - 1/k for all i. Of course, the term

correct selection' is now meaningless; but the EPC is useful as

another benchmark in that we would expect such a configuration to

maximize a multinomial procedure's expected sample size (i.e., the

expected number of multinomial observations needed before the

termination criterion is met). Denote the sample size for a procedure

P as Sp. E(S ) is the expected sample size.

SV-'I .V-.



Ideally, we wish to find a procedure which guarantees

P(CSIpSC)>P* but which is also parsimonious with observations; that

is, E(S pI6-SC) and E(S p IpEPC) should be 'low.'

,.o
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3. Some Multinomial Procedures

In this section, we concentrate on Indifference-zone procedures

for selecting the multinomial cell which has the largest probability.

Recall that when using the indifference-zone approach, the

experimenter must pre-specify two constants, P and 9*. The

f ~procedures to be discussed below insure that

P CS:e Pk-13 < PCk]) > (PR)

where PR stands for probability requirement. For all of these

procedures, we establish the folloming conventions:

-All observations are independent multinomial observations.

-T is defined to be the stage at which the procedure in question

terminates sampling. T may be a random variable.

-We will choose as best that cell corresponding to x k2,T (using

randomization if necessary).

3.1 A single-sample procedure

"The first procedure we consider is that of Bechhofer, Elmaghraby,

and Morse (1959), denoted as P

Procedure PBEM:

1. Specify k, P, and 5'.

2. Take N observations, where NN EM(k,P ,e e ) is
N~E BM BEM  i h ubro

to be found in the tables of BEM (1959). N is the number of

multinomial observations which must be taken in order to satisfy

Ethe PR.

,. .. . .... .. . .,,, , ........ ...... ................-.. . .



Remarks 3.31

1. Kesten and Morse (1959) prove that the SC Is the LFC.

2. In PBEM9 the number of observations we take is fixed at

NBEM* For this reason, the procedure is said to be a

fixed-sampJe or single-saeple procedure.

Example 3.1.1:

Suppose that k-3 and that we specify P .0.75 and 9*-3.

Use the following table (abstracted from BEM (1959)) in order

to find NBEM.

0* 1.1 1.5 2.0 3.0
NBEM

1 .355 .429 .500 .600

2 .355 .429 .500 .600

3 .362 .464 .563 .696

4 .367 .484 .594 .734

5 .370 .496 .617 .769

6 .374 .515 .646 .804

Table 1 (for PBEM):

P(CS'k=3,p=LFC) for selected 0* and BE4M

Reading down the *=3.0 column, we see that NBEM5 is the

smallest value of NBEM which achieves the PR (Note that owing

to the discrete nature of the multinomial distribution, PBEM

overshoots slightly the desired P*-0.75.) Hence, if we take



observations, the PR will be guaranteed.

3.2 P KO an improved version of PSEM

By considering the following example, it becomes apparent that

PBEM is sometimes wasteful with observations.

Example 3.2.1t

Suppose that k-29 NBEM-7 and ((K9,5 ,x1).D* E(x5,2,5

Obviously, it is impossible to terminate sampling with x Tix2,T .

In other words, there is no chance for cell 2 to be chosen.

Since cell I is guaranteed to be the victor regardless of

the remaining two observations, we should stop sampling at T-5.

With this example in mind, we compare two procedures, the latter due

to Bechhofer and Kulkarni (1983).

Procedure PBEM:

1. Specify k and N.

2. Take N observations.

Procedure P BK

1. Specify k and N.

2. Take observations until either

A. The stage t-N or

B. X k qt-X k-1t -- t (Stop sampling if the cell(s) with

the second largest number of observations can only tie the

call corresponding to x k~jt' even if the remaining N-t
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observations are taken.) //

Remarks 3.2g

1. Note that PBK is a sequential procedure.

2. It is clear that E(P K)(E(SPBEM

3. Bechhofer and Kulkarni show that PCCSIP BE)-Pccs:P ).

Thus, PBK preserves the P(CSJ of the less parsimonious

procedure, PDEW Hence, we can use the more efficient PBK

with no loss of PCCS).

Example 3.2.2:

Let k-3, P*mO.75, and e*-3. Then E(SP E)-NBEMn-5. It is

straightforward (but tedious) to show that E(S PBK)-3.95

in the LFC.//

3.3 A sequential procedure due to Ramey and Alam (1979)

Procedure PRA:

1. Specify k, P% e .

2. Take observations until either

A. x k],t'N or

B. xCk]vt-X k-13]t-r. where r and N are determined by k,

-q, q and 0 * and are to be found in tables for certain k. P

and 0 (NB: See Remarks below.)//

Remarks 3.3t

1. Ramey and Alam's tables actually contain a number of errors;
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the user to advised to consult BOchhofer and Goldsman (1984).

2. The number of observations which PRA takes is bouhded by

kN-k*..

3. It is not known whether the SC is the LFC for all k for PRA"

but we will make the reasonable assumption that this is the

case,

4. r and N are determined in such a way that the PR is

satisfied and E(S ERA -LFC) is minimized over the (rN)

grid.

5. PRA is not directly comparable to PBK" However, for most

choices of k, P and e , it seems that PRA requires fewer

observations (on the average) than PBK"

Example 3.3.1:

Again, let k-3, P-0.75, and e0-3. We abstract a small

portion of the necessary (corrected) tables for PRA from

Bechhofer and Goldsman (1984a).

b,4.

.1'.
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F4 e r N P(CS) E (S)

.75 3.0 2 3 .796 3.68

.75 2.4 2 5 .760 4.70

.75 2.0 4 5 .756 8.80

.75 1.6 4 12 .757 18.24

Table 2 (for PRA ):

P(CS~k=3,-LFC), E(SI.) for various P 9 0

We see that If r-2 and N=3 are chosen, a P(CS) of 0.796 will

be achieved in the conjectured LFC. The overshoot of the

PCCSp=LFC) (0.796 vs. P*-0.75) is again due to the discrete

nature of the problem. Further, in this examples

E (SPRA p-tLFC)-3.68 < 3.95=E(S P BK :=LFC)./

3.4 An unbounded sequential procedure, PBKS

Bechhofer, Kiefer, and Sobel (1968) give an unboun ded (or

open) sequential procedure which satisfies the PR.

Procedure P BKS

1. Specify kl P , 9 .

S2. Take observations until

k- (/ X k] t-x U] t  < (1-P /P *i

Remark 3.4:

1. 9KS show that the SC is the LFC for this procedure.

! ,



Example 3.4.1

Let k-3, P*-0.75, e*-3. Consulting the appropriate tables in

Bechhofer and Boldsman (1984b), we immediately find that

P(CSIV.LFC) - 0.842 (.0004) and E(S PKs IVuLFC) -

4.526 (.051). These results are Monte Carlo estimates

obtained via simulation; the entries in parentheses are the

accompanying standard errors. The results are nearly exact,

as can be seen by the small standard errors.,,

3.5 P.., an improved version of PBKS

As in the above example, it turns out that P KS frequently yields

k~r P(CS:VLFC) >>PP. This extra P(CS) is at the cost of unnecessary

observations. Therefores Bechhofer and Boldsman (1984b) give a

procedure which decreases the attained P(CS) to a level slightly

greater than P*, but which also saves observations.

Procedure PBG :

1. Specify k. P%

2. Take observations until either
_- k-I (l -) [ k], t -  Ci] ,t (jp )j C

A. i E< (1-P )/P or

B 9. the stage t-N 9 6 . where N. is determined by k, P%,

e, and is to be found in Bechhofer and Goldsman's tables

for certain values of k9 PC0 *

Remarks 3.5:
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1. %s Is chosen as the smallest upper bound on the total

number o4 observations such that the PR is satis41ed.

2. Unlike PBKS' PBs is bounded.

3. It is not known whether the SC is the LFC for this

procedureq but we so conjecture.

4. PBG is neither directly comparable to PSK nor P RA For

many choices o4 k. P* 9 0* it seems that PBG requires fewer

observations (on the average) than PBK" The authors feel

that the user should consult the relevant tables when

designing an experiment.

Example 3.5.1:

Let k=3, P*=0.75, 0 =3. We now abstract a small portion

of the necessary tables for PED from Bechhofer and Soldsman

(1984b).

P5  0* NBe PCCS) E(S)

.75 3.0 5 757 3.48

.75 2.4 8 760 5.59

.75 2.0 13 .751 9.18

.75 1.6 32 .752 17.80

Table 3 (for P e.

P(CSk=3gp-LFC), E(S|.) for various P, 0e

L We see that we must choose N.-5 with the resulting

J '

9f



P(CS5p-LFC-O.757 and E(S. tE-LFC)o3.48.,

3.6 P All an augmented version of P 6

We now employ the same device which was used in PD

Viz., we Stop sampling when the cell in second Place only

has a chance to tie.

4.Procedure P 

I. Specify k. 0%, 0.

2. Take observations until

A. k I~~S C1e) k3qt- Ei3.t <(1-P )/P or

B. t-N AlinNBG, where N. is from P. or

C. X -X

Ck],t Ek-13,t 'NAl -t.

Remarks 3.6:

1. lealy E( PAl ( 96

2. By reasoning similar to that given in Dechhofer and

Kulkarni (1983), pCCSIPA - PCCSIPB). That is, no PCCS)

is lost between the two procedures.

3. Tables for P are currently being Prepared. See
AlI Remark 3.6.2 above for information concerning the PCCS).

Example 3.6.1%

Aganlet k=39 P *-O.75, e*=3. Then NA,-5 and PtCSte-nLFCjwO.757

as before. Now, E(S~ P lpLFC)-3.24 < 3.48mE(S~ Ip-'LFC). 1
Al 96G
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3.7 General remarks

We have seen procedures which follow a poset of sorts in terms of

sampling efficiency. POEM leads to the more efficient PBK"

Similarly, PBKS leads to PBG which, in turn, leads to PAl. PRA stands

alone. We note that augmentations may be made to PRA' but this makes

our search for the optimal combination of r, N. etc., intractable.

PEM >P -BK

PBKS P BS -> PAl

P RA

In lieu of work currently in progress, the authors recommend use of

PRA or PAl when these procedures are applicable to the situation at

hand.

I

4)

4)
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4. Applications and Augmentations In Simulation

We are now interested in the more general problem of determining

which of k arbitrary populations 1ID...0 k is the 'best.' Suppose Xt

is an independent observation from 1,9 i1l,...,k. Recall that we can

correspond each of the k 1 .s with a cell of a k-nomial distribution

with cell probabilities plose.,k' where

pi PCX is the "most desirable* of X06Y.,Xk). Hence, the

multinomial procedures described in the last section are

nonpara.etric. This fact is of tremendous importance for simulators

since the underlying distributions of the i s (i.e., k simulated

systems) are frequently unknown.

4.1 An example

Suppose that we wish to choose that one of k different (sS)

inventory policies which will have the highest probability of yielding

the maximum profit for a small company. Here, profit is taken to be

the criterion of desirability. It is assumed that the financial

affairs of the company are complicated enough such that an analytic

.* solution of this problem is not possible. Thus, it is necessary to

resort to the use of simulation and multinomial selection techniques.

For the sake of simplicity, suppose that k-39 P0-0.75, and e-3.

That is, we must choose among three (sS) policies; it is desired

Sthat PCCS:P Ek ] k)spMk- , where pi is the probability that the i-th

policy yields the highest profit in a given k-vector observation. He

will use procedure PAl"

We simulate each of the three (sS) policies (with different
4'



pseudo-random number sequences) to obtain vector observations

X, OX29 0 9 Let Y j ~ the profit from policy j on the t-th simulation

run. Yt (Yjj2tYj) tftlg,.J9 where T is the stage of

Sampling at which P Alterminates. After the t-th stage of sampling is

completed, identify the policy which yields the highest profit among

(Y14 9Y9 OV3 4 )* If necessary, use randomization to break ties.
Increment the count in the corresponding multinomial cell by one.

Example: If YI-(356,422,297), then the highest

profit (for this vector observation) is realized by12

*Thus, the count xI-(x I 1 ,x2 1 ,x,,) (0,1,0).,

Take 3-vector simulated observations until P Al calls for the
termination of sampling. Recall from Section 3.8 that PA

terminates when

1kI (i/,*xll -xi3,t <(l-p*)Ip* 1/3) or

2.t -N Al 5) or

3.x k39t X k-19t -NAl-t C-5-t)

In the table below, we continue the example. The first column

gives the sampling stage - i.e., the number of 3-vector observations

which have been taken. In the next three columns, the 3-vectors of

simulated data are given. These are followed by the corresponding

multinomial cell x at- .



Stage t Y',t Y2,t Y3,t x1,t X29t X3,t

1 356 422 297 0 1 0

2 411 378 314 1 1 0

3 374 393 380 1 2 0

4 368 374 379 1 2 1

At stage t - 49 PAl calls for procedure termination since

x k)qt - '[k-139t - N - t. We choose policy two as 'best.' since

that is the policy corresponding to x[ 3 3T.//

4.2 Pseudo-observations

We discuss an augmentation of PAl that eliminates populations

which seem to be 'inferior.* The augmentation takes advantage of the

possibility that in the course of sampling, some of the 1. s will have

no chance of *winning* (being chosen as 'best').

For instance, in the example of Section 4.1,

E 3 = x 1 , 3 ,x 2 , 3 ,x 3 , 3 ) = (1,2,0).

Claim: Given that E3 = (1,2,0), it is impossible for
4

13 to win (in this example).

'1Proof:

Case 1z If E4 (2,2,0), then only 11 and I 2 can

win (since Nl -5.

Case 2: If : (1.3,0), then sampling terminates

and I wins (since (/) ,,,*) x Ck3,t xI3,t <
'2 1

Case 3: If t4 - (19291), then V2 wins (since

X4 k2,t - Ek-13,t N Al V.
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* Thus, in this example, it is poihtJess to sample fro& 13 given

that k 3 - (1,2,0).

With this example in mind, consider the following augmented

procedure, P, which no longer takes observations from 1I3I Suppose

that before the next vector observation Is taken, a U(O,1) probability

die is rolled. Let the outcome of the roll be Olu<. Since the PR

must be satisfied, assume that (p l13p[23OP[3]) - (p,p,e p), where

p P =1/(0 +2). That is, the underlying configuration of pi's is the SC

(the conjectured LFC). If ujp<l, award a 'success' to multinomial

cell 3 (i.e., increment cell 3's count by one: x x 39 4 1)

without actually taking vector observation 14V In this case, we have

generously awarded 13 a 'free success,' and we call this non-

observation a pseudo-observation. If u>p, define Y - (Y1 Y 2 ,4 )" In

this case, we only sample from 11 and I2" Increment as usual the

count of the cell corresponding to the *more desirable' of the two

observations. Take observations in this manner until any of the

stopping criteria from PAl are met (where the xitt s are defined as

above).

With the example still in mind, let B be the event that we are

using procedure P A' the underlying configuration of the pi s is the

* SC, and x3 (1,2,0). Define C similarly except that PAI is to be

replaced by PO.

Claim: PCSB) - PtCSIC).

Proofs Since we operate in the SC, p 3 - p or *p.

Case 1: If p 3  0 0p. then cell 3 is the correct cell

(since 0 > 1). However, it is clear that

...-.



P(CStp 3 -0 eP, B) P(CIp agep, C) a 0.

Case 2t Suppose p 3 0 P. Then (p,,p) (Poe p) or

(9 Pop). Assume the farmer subcase. A similar argument

will apply for the latter. Consider P . and a given

3-vector observation. Then 1 3 is awarded a

I(pseudo-)success with probability p. Further, 1, is

awarded a success w. p.

P(1T3 will not get the success) x P(11 will get the

success I only 1 1 and 11 2 are under consideration).

(1U-p) x P/tpO ~p) - p. Similarly,

PO2will get the success) - * p. But these success

probabilities are exactly the same as those from PA

Since the termination criteria f or both procedures are

also identical, we have the result.

Goldsman and Schruben (1994) consider a more general

version of P..

Procedure PA

1. Specify k, Poe

For t-1,2,...

2. Let It = X CiEk,,t -xiot ~NAl t

(This is the set of 1.s that no longer have a

chance to win.)

3. For each ialt, allocate an interval of length

p of E0913, where pil/(k-14O )

4. Roll a U(0,1) random number, u.

5. If u falls in an interval allocated for some JaIt,

Increment the corresponding x jot by one (i.e.,9 award



-22-

a 'pseudo-success' to IJ). Otherwise, take actual

observations from all 1s such that i1(l,..9,k)\lt -

Increment by one the xi t corresponding to the 'most

desirable' observation.

6. Terminate the procedure (with the usual decision

rule) if any of the termination criteria for PAl

are satisfied.

Remarks 4.2:

1. Goldsman and Schruben (1984) prove that

P(CS:PI, =LFC) - P(CSIPA2 , p=LFC).

2. Clearly, E(SP A2e=EPC) < E(SPAl 1pEPC), where S is

the number of stages (in which actual observations are

taken) until termination. It seems likely that this

relationship also holds when _=LFC, but this has not yet

been proven.

. 3. Tables for P are currently being prepared. See
A2

Remarks 4.2.1 and 3.6.2 for information concerning PCCS).

4. The trick of taking pseudo-observations is particularly

"' suited for the simulation environment.

Example 4.2.1:

Again, let k=3, P -0.75, 0 -3. Then P(CS! -LFC) -

0.757 as before, and E(SP A2 PLFC) = 3.12

4.3 Correlation induction

Frequently, it is possible for the simulator to artificially



induce (positive) correlation among the IIs. For instance, the

Simple technique of common random numbers Can be used (when

applicable). More complicated methods can also be implemented. it

stands to reason that as the correlation among the populations

Increases, it becomes easier for the experimenter to distinguish which

of the populations is the Obest.'

Consider the aforementioned selection procedures. Obviously, an

* increase in 0 facilitates the distinction of the 'best' multinomial

Cell. The following crude example illustrates how positive

correlation induction can result in increased 0*

Example 4.3. 1:

Suppose that k-n2 and that X.I is distributed normally

with unknown mean aIand known, common variance r2,9

i-192. If one observation is larger than another, the

first observation is taken to be the more desirable.

So, define p1  P(X I > X 2 ), p2 -1-p 1 . Suppose

that SL 1 > AL2' so we can let p 1 -Op and p 2 - p, where

e is some number > 1. Clearl~y, e - (1-p)/p. Finally,

define P- Corr(X 1 9 X2 ) > 0.

Now, p, P(Xl>X2 ) 1 PXX2 >0

-P(X -X2-(JA1-Ja2)2/0 > 01&2)W,

where a - 4~(2e (1-P))

1 1-(I51-42 ) /) 0 J -P /-

where OC)is the N(091) cdf

-OpP sayl, 1-p.



Then 9 * (-p)/p )

where A 1 (I- 2 )/W.

Hence, 9 P/e 0

where n' -V(l-p).

This quantity is obviously > 1. Thus, 0 > 0

Remark 4.3:

More details and examples are given in Goldsman and

Schruben (1994).

4.4 Population splitting

We remarked earlier that the LFC represents a 'worst case'

configuration for eIe0 *, the preference zone. Of course, such a worst

case is rarely encountered in practice. 1f, in a simulation study,

P. aIle*, then it is likely that p is not in the slippage configuration.

-- " Perhaps it is possible to take advantage of this likelihood. A

ageneralization of taking pseudo-observations is proposed which avoids

taking observations from 1i s which seem to be 'inferior' to other

* populations. Indeed, in the course of sampling, we partition the i's
da

into a 'good' set 6 and a *bad' set B. The populations in 6 receive

real observations while those in B receive only pseudo-observations.

If certain populations in 6 do not garner many successes during

sampling, it is possible to exchange them with populations from B.

This possibility of exchange gives all of the k populations a chance

to win while discouraging actual sampling from 'bad' Ii'"s

The sampling procedure we consider below is almost purely

heuristic. To facilitate the discussion, we consider directly



sampling from a k-nomial distribution.

Procedure P 1

1. Specify kP , , n0 (some initial number of k-nomial

observations).

2. Take n0 observations.

3. Partition cells 1,...,k into 'good* cells 6 and *bad*

cells B. Suggestion: Place the cells with > the median

number of successes (either real or pseudo) into 6; put

the others in B.

4. Temporarily be conservative and assume that the 'best'

cell is in B. In the LFC, this cell will have probability

* p; PMD) - (:B; - 1)p + *p. With probability P(B),

award a pseudo-success to a randon cell in B. If a

pseudo-success is not awarded to a cell in B. take a real

multinomial observation from the cells in 6 (i.e., take

observations only from II. s corresponding to cells in 6).

5. If any of the termination criteria from a previously

discussed multinomial procedure (which must be pre-

specified) are met, stop sampling and choose as best that

cell corresponding to x kT Otherwise, go to 3.

Remarks 4.4:

1. Admittedly heuristic, this procedure is intuitively

appealing.

2. Goldsman and Schruben (1994) give more details and some

limited computer simulations relevant to this procedure.

Caveatt very little work has been done to date.
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3. We feel that this procedure will work well for large

k and P* and for small 9
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5. Summary

In this expository paper, we have introduced the reader to the

problem of selecting the oultinomial cell with the largest underlying

probability. A brief review of some of the existing multinomial

selection procedures was given. The superior procedures appear to be

PRA and P Al We also argued that these multinomial procedures could

actually be viewed as nonparametric procedures; thus, they should be

attractive to simulators. Various augmentations for use in the

simulation environment were presented. This interesting problem

remains an active area of research from the points of view of both

statistics and simulation.

Acknowledgement: We thank Prof. Robert E. Bechhofer of Cornell

for his many comments and suggestions.
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